
Iridium Complexes of Tertiary t-Butyl- and Di-t-butylphosphines including Some Five-co-ordinate Iridium(III) Complexes with Hydride Resonances at τ ca. 60 \dagger

By C. Masters, B. L. Shaw,* and R. E. Stainbank, School of Chemistry, The University, Leeds LS2 9JT

Treatment of chloroiridous acid with di-t-butyl-n-alkylphosphines (4 mol. equivalents) in boiling isopropyl alcohol gives purple, five-co-ordinate, square pyramidal hydrides $[IrHCl_2(PBu_2^tR)_2]$ (R = Me, Et, or Pr^a). These complexes have a hydride resonance at τ ca. 60, the highest yet observed. With 2 or 3 mol. equivalents of PBut_2Pr^a in isopropyl alcohol, chloroiridous acid gives $[PBu_2^tPr^aH][Ir_2Cl_7(PBu_2^tPr^a)_2]$ but with 2 equivalents of PBut_3Me a hydride is formed, possibly $[PBu_2^tMeH][Ir_2Hcl_6(PBu_2^tMe)_2]$. With primary alcohols as solvents, hydride formation is generally accompanied by abstraction of carbon monoxide from the alcohol; thus chloroiridous acid and t-butyldi-n-propylphosphine in 2-methoxyethanol eventually give a mixture of trans- $[IrCl(CO)(PBu^tPr^a_2)_2]$ in very high yield. $[IrHCl_2(PBu_2^tPr^a)_2]$ reacts with boiling 2-methoxymethanol to give trans- $[IrCl(CO)(PBu^tPr^a_2)_2]$ in 90% yield. ¹H- and ³¹P-N.m.r. and i.r. data are given.

WE are investigating the products formed when transition-metal halides are treated with bulky (sterically hindered) phosphines. These products are frequently of an unusual type, sometimes having low co-ordination numbers ^{1,2} or undergoing internal metallation reactions very readily; ³ there is also a tendency to produce metal green, corresponding to reduction of iridium(IV) to iridium(III). We shall henceforth refer to the reduced species as chloroiridous acid. On adding di-t-butyl-(n-alkyl)phosphines (PBut₂R; R = Me, Et, or Prⁿ; 4 molar equivalents per Ir atom) to this green solution, a pale green precipitate forms. This gradually dissolves

SCHEME Some products formed from chloroiridous acid and tertiary t-butyl- or di-t-butyl-phosphines reacting in alcohols (i) $L = PBut_2Me$, $PBut_2Et$, or $PBut_2Pr^n$ (4 molar equivalents) in isopropyl alcohol. (ii) $L = PBut_2Pr^n$ in refluxing 2-methoxyethanol. (iii) $L = PBut_2Et_2$ or $PButBun_2$ (3.3 molar equivalents) in 2-methoxyethanol. (iv) $L = PBut_2Pr^n_2$ (3.3 molar equivalents) in 2-methoxyethanol. (v) $L = PBut_2Pr^n$ (2 or 3 molar equivalents) in isopropyl alcohol. (vi) $L = PBut_2Me$ (2 molar equivalents) in isopropyl alcohol. (vii) $L = PBut_2Pr^n$ (4 molar equivalents) in 2-methoxyethanol.

TABLE 1

Colours, melting points, percentage yields, analytical and molecular weight data for the complexes $[IrHCl_2(PBut_2R)_2]$ configuration (I) (R = Me, Et, or Prⁿ)

				Analytical data (%) •						
R	Colour	M.p. (°C)	Yield (%)	c	H	cì	M ª			
Me	Deep purple	195-200 ^b	67	36.95 (36.95)	7·3 (7·4)	11.9(12.1)				
Et	Deep purple	171174	40	39·3 (39·2)	7.7 (7.7)	11.45(11.55)	617 (612)			
Prn	Red-purple	192—195 °	58	41·2 (41·25)	8.05 (8.0)	10·8 (11·05)	635 (640)			
	^a Calculated values in parentheses. ^b Decomposes without melting. ^c Decomposes on melting.									

Calculated values in parentneses. • Decomposes without melting. • Decomposes on m

hydrides.^{1,2} Formation of these unusual products is associated with a relief of steric crowding around the metal.¹⁻⁵ We have briefly reported that di-t-butyl-(alkyl)phosphines (L) react with chloroiridous acid in isopropyl alcohol to give purple five-co-ordinate hydrides, [IrHCl₂L₂];¹ we now report more fully on these, and related, reactions.

When a solution of chloroiridic acid in isopropyl alcohol is heated for a few minutes at ca. 80° it becomes

on heating under reflux to give a deep purple solution, from which five-co-ordinate hydrides, $[IrHCl_2(PBut_2R)_2]$, separate as red-purple crystals on cooling, in *ca.* 65% yield (see Table 1 for analytical, molecular weight, and other data). These complexes show an i.r. absorption band at *ca.* 2000 cm⁻¹ (weak) due to v(Ir-H) and only one band due to v(Ir-Cl), at *ca.* 315 cm⁻¹ (strong) (Table 2). Apart from the band due to v(Ir-H) the i.r. absorption spectra (4000—400 cm⁻¹) are almost identical to the

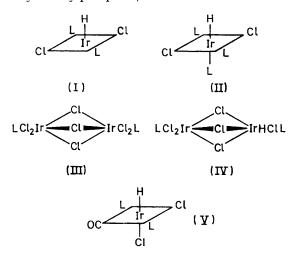
[†] No reprints available.

¹ C. Masters, B. L. Shaw, and R. E. Stainbank, Chem. Comm., 1971, 209.

² W. S. McDonald, C. Masters, G. Raper, and B. L. Shaw, Chem. Comm., 1971, 210.

³ A. J. Cheney, B. L. Shaw, and R. M. Slade, *Chem. Comm.*, 1970, 1176.

⁴ A. J. Cheney, B. E. Mann, B. L. Shaw, and R. M. Slade, J. Chem. Soc. (A), 1971, 3833.


⁵ C. Masters and B. L. Shaw, J. Chem. Soc., 1971, 3679.

spectra of complexes of type trans-[PdCl₂(PBu^t₂R)₂].⁶ The ¹H n.m.r. (hydride) pattern for these compounds is a well defined 1:2:1 triplet indicating coupling to two equivalent P-nuclei. The ¹H (t-butyl) n.m.r. pattern is also a 1:2:1 triplet showing that $|^{2}J(P-P)|$ is large ⁷ and that the phosphines are therefore probably mutually trans.^{6,8,9} For the PBu^t₂Me complex the methyl resonance is also a 1:2:1 triplet (Table 2). Thus the hydrides; e.g., $[IrHCl_2(PBu^t_2Et)_2]$ has λ_{max} nm (ϵ) at 568 (420), 529 (350), 461 (570), 433 (469), and 404 (369). The high τ values might therefore be due to an unusual amount of 'mixing in' of the excited states under the influence of the magnetic field. A very short iridiumhydrogen distance, which might arise because of the absence of a trans-ligand, could also contribute towards a high τ -value.

TABLE 2 I.r. (cm⁻¹) and ¹H n.m.r. data for the complexes [IrHCl₂(PBu^t₂R)₂], configuration (I) (R = Me, Et, or Prⁿ)

$\nu(\text{Ir}-\text{H})$ (I. C)				t	-Butyl resonance ^a	Hydride resonance ^a		
R	Nujol	Benzene	ν(Ir−Cl) Nujol	τ	$ ^{3}J(P-H) + {}^{5}J(P-H) $	Ŧ	<u>²</u> <i>J</i> (Р-Н)	
Me ^b	1998w	2000w	316s	8.66t	13.2	60.5t	10.7	
\mathbf{Et}	2005w	2012w	313s	8.58t	12.4	59.6t	11.2	
\Pr^n	2005w	2016w	313s	8.57t	12.8	60.0t	11.2	
a ln d	lichloromethane	; τ -values \pm	0·02, J-values \pm	0.1 Hz; t = 1000 Hz	triplet. $b \tau_{Me} = 8.54$ t, $^2J(P$	$-H) + {}^{4}J(P-J)$	$\mathbf{H})] = 3.1 \mathrm{Hz}.$	

complexes $[IrHCl_2(PBu^t_2R)_2]$ very probably have the square pyramidal structure (I). They are therefore analogous to the rhodium complexes $[RhHCl_2L_2]$ (L = tertiary t-butylphosphine) for which the structure has

been shown to be square pyramidal with $L = PBu^t Pr_2^n$ by X-ray diffraction, coupled with other physical methods.^{2,5}

The ¹H (hydride) n.m.r. spectra of these five-coordinate iridium(III) hydrides [IrHCl₂(PBu^t₂R)₂ show the largest τ -values yet observed, being 60.5 (Me), 59.6 (Et), and 60.0 (Prⁿ) (Table 2). A high τ -value for a transition-metal hydride has been attributed to paramagnetic shielding by valence *d*-electrons of the metal.^{11,12} According to this theory the shielding would increase as the separation between the ground and electronically excited states decreases and/or the metal-hydrogen distance decreases. Our five-co-ordinate iridium(III) hydrides show electronic absorption maxima which are at exceptionally low frequencies for

⁶ B. E. Mann, B. L. Shaw, and R. M. Slade, J. Chem. Soc. (A), 1971, 2976.

 ⁷ R. K. Harris, Canad. J. Chem., 1964, 42, 2275.
 ⁸ J. M. Jenkins and B. L. Shaw, Proc. Chem. Soc., 1963, 279.
 ⁹ A. J. Deeming and B. L. Shaw, J. Chem. Soc. (A), 1969, 1128, and references therein.

These five-co-ordinate hydrides [IrHCl₂(PBu^t₂R)₂] are co-ordinatively unsaturated with a vacant site trans to the hydrogen. We have shown that in six-co-ordinate hydrides $[IrHCl_2L_3]$ of configuration (II), L = a tertiary phosphine or tertiary arsine which is not particularly bulky, the ligand L trans to the hydride ligand is much more labile than the other two Ls and is probably less strongly bonded to the iridium.¹² The strong trans bondweakening effect of the hydride ligand is probably one important factor but another could be a steric interaction with the other two tertiary phosphines in *cis*-positions. With the extremely bulky di-t-butyl(n-alkyl)phosphines this cis-steric interaction will be very large and hence co-ordination of a third bulky ligand will be prevented.

We have attempted to isolate intermediates in the conversion of chloroiridous acid into [IrHCl₂(PBu^t₂R)₂]. When an isopropyl alcohol solution of chloroiridous acid is treated with only 2-3 molar equivalents of PBut₂Prⁿ and the mixture heated under reflux for 17 h the resultant solution is red not purple and on cooling orange crystals separate. This product appears to be [PBut₂PrⁿH]-[Ir₂Cl₇(PBu^t₂Prⁿ)₂] for the anion of which we suggest configuration (III). This formulation is based on the following evidence. (1) The complex is a 1:1 electrolyte in nitrobenzene. (2) Its i.r. spectrum (Table 3) shows bands at 2370w cm⁻¹ due to ν (P-H), and 325s and 295m cm^{-1} due to v(Ir-Cl). (3) The ¹H n.m.r. spectrum (Table 3) shows one t-butyl doublet resonance with ${}^{3}/(P-H) =$ 16.1 Hz, characteristic of a t-butylphosphonium ion, and a second t-butyl doublet resonance with ${}^{3}J(P-H) =$ 13.2 Hz, typical of a t-butylphosphine co-ordinated to iridium(III). The resonance due to the hydrogen directly bonded to phosphorus was not detected and may have been broadened by exchange effects. (4) The ³¹P n.m.r. spectrum with ' random noise ' decoupling of the protons shows two phosphorus environments in the ratio of 1:2. On the basis of the analytical and the above mentioned

¹⁰ A. D. Buckingham and P. J. Stephens, J. Chem. Soc., 1964, 2747.

¹¹ P. W. Atkins, J. C. Green, and M. L. H. Green, J. Chem. Soc. (A), 1968, 2275. ¹² J. Powell and B. L. Shaw, J. Chem. Soc. (A), 1968, 617.

evidence, the complex is probably the di-t-butyl(n-propyl)phosphonium salt of the anion $[Ir_2Cl_7(PBut_2Pr^n)_2]$ of configuration (III).

When an isopropyl alcohol solution of chloroiridous acid is heated under reflux with di-t-butylmethylphosphine (2 molar equivalents) for several hours an orange product is again obtained. This is a 1:1 electrolyte and the i.r. and ¹H n.m.r. spectra show it to be a di-tbutylmethylphosphonium salt (Table 3). However, there are also two 1:1 doublet resonances at τ ca. 40; one approximately twice as intense as the other and in the i.r. spectrum there is a weak band at 2260 cm⁻¹ which could be due to v(Ir-H). The % analytical composition is in agreement with the formulation [PHBut₂-Me][Ir₂HCl₆(PBut₂Me)₂]. However, there are five doublet t-butyl resonances in the ¹H n.m.r. spectrum (Table 3). One is due to [PBut₂MeH]⁺ and we suggest that the

When chloroiridous acid is treated with di-t-butyl(npropyl)phosphine (4 mol. equivalents) in boiling 2-methoxyethanol for 1 h the deep purple crystalline solid which crystallizes out of the cold solution is a mixture which we could not separate. The i.r. absorption spectrum shows a weak band at 2000 cm⁻¹ due to the v(Ir-H)of [IrHCl₂(PBu^t₂Prⁿ)₂] configuration (I), but there is also a strong band at 1924 cm⁻¹, probably due to the ν (CO) of $trans-[IrCl(CO)(PBu_2^tPr^n)_2]$, and a weak band at 2265 cm⁻¹, possibly due to ν (Ir–H) of an unknown hydride. When a similar solution was heated under reflux for 18 h it became red and orange crystals separated on cooling. Thin-layer chromatography (benzene-silica gel) shows this orange product to be a mixture of two substances, the major component being trans-[IrCl(CO)-(PBu^t₂Prⁿ)₂]. We have not managed to isolate the minor component but it must be a hydride since the

TABLE 3

I.r.^a, ³¹P, and ¹H n.m.r.^b data for the complexes [PBu^t₂PrⁿH][Ir₂Cl₇(PBu^t₂Prⁿ)₂] and [PBu^t₂MeH][Ir₂Cl₂H(PBu^t₂Me)₂]

Complex					t-Butylphosphine resonance		t-Butylphos- phonium resonance		Other resonances			na
from PBu ^t ₂ Pr ⁿ	u(P-H) 2370w	v(Ir–H)	ν(Ir−Cl) 325s 295m	∲ 38·7° +7°	au 8·56d	${}^{3}J({ m P-H}) \ 13{\cdot}2$	au 8·43d	^з J(Р–Н) 16·1	Assignme	nt	Coupling constant	
PBut₂Me	2395w	226 0w	29511 327s 252m	+7*	8·57d 8·61d 8·63d 8·67d	$13.8 \\ 13.3 \\ 13.5 \\ 13.3 \\ 13.3$	8∙48d	16.4	(Ir-H) (Ir-H) $(Bu^{n}_{2}HP-Me)$	40·55d 40·65d 8·06q	${}^{2}J(P-H)$ ${}^{2}J(P-H)$ ${}^{2}J(P-Me)$ ${}^{3}J(H-Me)$	$19.5 \\ 19.7 \\ 13.1 \\ 5.9$

^a In cm⁻¹, in Nujol. ^b $p = {}^{31}P$ Chemical shift ($\pm 0.01 \text{ p.p.m.}$) with reference to 85% H₃PO₄; recorded at 36.43 MHz in dichloromethane with all ¹H nuclei decoupled; τ -values ± 0.02 , J values ± 0.1 Hz, d = doublet, q = 1:1:1:1 quartet. ^c Assigned to the phosphonium ion. ^d Assigned to the complexed phosphine.

ion $[Ir_2HCl_6(PBu^t_2Me)_2]^+$ exists as different stereoisomers or conformers and hence gives more than two (*i.e.* four) t-butyl resonances and more than one (*i.e.* two) hydride resonances.

There are several examples of the existence of conformers of di-t-butylphosphine- or di-t-butylalkylphosphine-metal complexes; e.g. trans-[PdCl₂(PHBut₂)₂],¹³ trans-[RhCl(CO)(PMeBut₂)₂]¹⁴ or trans-[IrCl(CO)(PBut₂- Me_{2} at -60° .¹⁴ In addition, some complexes of di-tbutyl(o-tolyl)phosphine exist in different conformations.¹⁵ We tentatively formulate $[Ir_2HCl_6(PBu_6^tMe)_2]^-$ as (IV), for which different stereoisomers are possible. Clearly the mononuclear hydride (I) could be formed from (IV) by fission of the chlorine bridges and the binuclear hydride (IV) by a reduction of the ion (III) either by isopropyl alcohol or by an excess of the tertiary phosphine and water. We generally find that when chloroiridous acid is heated with a tertiary di-t-butylphosphine in either ethanol or 2-methoxyethanol, an iridium carbonyl complex is formed, hence the reason for using isopropyl alcohol as solvent to make [IrHCl₂(PBu^t₂R)₂]. Indeed, [IrHCl₂(PBu^t₂Prⁿ)₂] reacts with boiling 2-methoxyethanol as solvent over 20 h to give trans-[IrCl(CO)- $(PBu^{t}_{2}Pr^{n})_{2}$ in 90% yield.

¹³ A. Bright, B. E. Mann, C. Masters, B. L. Shaw, R. M. Slade, and R. E. Stainbank, J. Chem. Soc. (A), 1971, 1826.

mixture shows a 1:2:1 triplet ¹H n.m.r. pattern at τ 43·3 with an area corresponding to one hydride for twenty di-t-butyl(n-propyl)phosphine ligands. The unknown hydride may be of the type $[IrH_2Cl(PBut_2Prn)_2]$. We have made analogous dihydrides of rhodium $[RhH_2ClL_2]$ with $L = PBut_2R$ or $PBut_3.^5$ When an ethanolic solution of chloroiridous acid is heated under reflux with a di-t-butyl(n-alkyl)phosphine for 16 h the major product $[IrHCl_2(PBut_2R)_2]$ is contaminated with some *trans*- $[IrCl(CO)(PBut_2R)_2]$, which is very difficult to remove.

Deep purple solutions are formed on treating chloroiridous acid with t-butyl(di-n-alkyl)phosphines under reflux in isopropyl alcohol for 16 h, but we have been unable to isolate any crystalline products. A mixture chloroiridous acid and t-butyl(di-n-propyl)phosphine in 2-methoxyethanol when boiled for 2 h gives a yellow solution from which a mixture of *trans*-[IrCl(CO)-(PBu^tPrⁿ₂) and [IrHCl₂(CO)(PBu^tPrⁿ₂)₂], configuration (V), is readily isolated. If hydrochloric acid is added to the yellow solution before isolation then the solution becomes colourless and [IrHCl₂(CO)(PBu^tPrⁿ₂)₂] is formed in *ca.* 100% yield. Analogous complexes were also prepared from PBu^tEt₂ or PBu^tBuⁿ₂.

¹⁴ B. E. Mann, C. Masters, B. L. Shaw, and R. E. Stainbank, *Chem. Comm.*, 1971, 1103.

¹⁵ A. J. Cheney and B. L. Shaw, unpublished results.

Some of the products and reactions which occur when chloroiridous acid is treated with tertiary t-butyl- or dit-butylphosphines in alcohol solvents are summarized in the Scheme.

EXPERIMENTAL

M.p.s were determined on a Kofler hot-stage apparatus and are corrected. Operations involving free tertiary phosphines were carried out in an atmosphere of argon.

Molecular weights were determined on a Hitachi–Perkin-Elmer 115 apparatus in benzene (at 40°). I.r. spectra (2500—400 cm⁻¹) were recorded either on a Grubb–Parsons G54 spectrometer or on a Perkin-Elmer 457 spectrometer; from 400 to 200 cm⁻¹ on a Grubb–Parsons DB3/DM2 and DM4 spectrometer. N.m.r. spectra were measured either on a Perkin-Elmer R12 60 MHz spectrometer at *ca.* 34 °C or on a Brüker Spectrospin 90 MHz spectrometer at *ca.* 28°.

Hydridodichlorobis(di-t-butylmethylphosphine)iridium(III), Configuration (I).—A solution of chloroiridic acid (2.83 g, 5.9 mmol) in isopropyl alcohol (70 ml) was heated under reflux until it became green (ca. 3 min). The solution was then cooled to ca. 40° and di-t-butylmethylphosphine (3.77 g; 23.6 mmol) added. The resulting green slurry was heated under reflux for $22\frac{1}{2}$ h to give a deep purple solution from which the required product separated as prisms (2.3 g; 3.94 mmol) on cooling.

The following two complexes were similarly prepared as prisms from isopropyl alcohol: *Hydridodichlorobis(di-tbutylethylphosphine)iridium(III)*, configuration (I); *Hydridodichlorobis(di-t-butyl-n-propylphosphine)iridium(III)*, configuration (I).

Di-t-butyl-n-propylphosphonium Tetrachlorotri- μ -chloro-bis-(di-t-butyl-n-propylphosphine)di-iridate(III), Configuration (III).—A solution of chloroiridic acid (0.802 g; 1.67 mmol) in isopropyl alcohol (30 ml) was heated under reflux until it became green (ca. 5 min). The solution was cooled to ca. 40° and di-t-butyl-n-propylphosphine (0.944 g; 5.03 mmol) added. The resulting green slurry was heated under reflux for 17 h to give a deep red solution which gave the product as orange prisms (0.632 g; 0.52 mmol, m.p. 220—225°) on cooling (Found: C, 33.1; H, 6.3; Cl, 20.4. C₃₃H₇₆Cl₇Ir₂P₈ requires C, 33.05; H, 6.3; Cl, 20.7%). Molar conductivity in ca. 10⁻³M nitrobenzene solution at 22° was 28 cm² Ω^{-1} .

The Product formed from Chloroiridous Acid and Di-t-butylmethylphosphine (2 mol. equivalents) in Isopropyl Alcohol.—A solution of chloroiridic acid (1.56 g, 3.25 mmol) in isopropyl alcohol (40 ml) was heated until it went green; it was then cooled and the phosphine (1.03 g, 6.5 mmol) was added to it. The resulting slurry was heated under reflux for 17 h and cooled whereupon the product (0.92 g) separated. It formed *prisms*, m.p. 230—235 (decomp.) from isopropyl alcohol. The product is possibly $[Ir_2HCl_6(PBut_2Me)_2]$ -[PBut_2MeH] (Found: C, 30.05; H, 6.25; Cl, 19.95. C₂₇H₆₄-Cl₆Ir_2P₃ requires C, 30.05; H, 6.0; Cl, 19.7%). The molar conductivity in *ca*. 10⁻³M nitrobenzene solution at 22° was 23 cm² Ω^{-1} .

Conversion of Hydridodichlorobis(di-t-butyl-n-propylphosphine)iridium(III) to trans-Chloro(carbonyl)bis(di-t-butyl-npropylphosphine)iridium(I) in 2-Methoxyethanol.—A solution of hydridodichlorobis(di-t-butyl-n-propylphosphine)iridium-(III) (0.120 g; 0.188 mmol) in 2-methoxyethanol (15 ml) was heated under reflux for ca. 20 h. The resultant clear yellow solution was cooled at ca. 25 °C and gave transchloro(carbonyl)bis(di-t-butyl-n-propylphosphine)iridium(I) as prisms (0.116 g, 0.17 mmol).

The Action of t-Butyldi-n-propylphosphine on Chloroiridous Acid.—A solution of chloroiridic acid (1·15 g, 2·4 mmol) in 2-methoxyethanol (20 ml) was heated until it went green; it was then cooled and t-butyl(di-n-propyl)phosphine (1·38 g, 0·79 mmol) was added to it. The resulting slurry was heated under reflux for 2 h to give a yellow solution. Isolation then gave a yellow oil which when treated with methanol gave a yellow solid (0·73 g). This was shown by i.r. spectroscopy to be a mixture of *trans*-chloro(carbonyl)bis(t-butyldi-n-propylphosphine)iridium(I) and dichlorohydrido(carbonyl)bis(t-butyldi-n-propylphosphine)iridium-(III), configuration (V; $R = H, L = PBu^{t}Pr^{n}_{2}$).

Hydridodichloro(carbonyl)bis(t-butyldi-n-propylphosphine)iridium(III), Configuration (V), (L = PBu^tPrⁿ₂).—A solution of chloroiridic acid (1·24 g, 2·58 mmol) in 2-methoxyethanol (25 ml) was heated until it became green; it was then cooled and t-butyldi-n-propylphosphine (1·49 g, 8·58 mmol) was added to it. The resulting slurry was heated under reflux for 4 h. Concentrated hydrochloric acid (5 ml) was added to the cooled solution, from which the required product was readily isolated as colourless *plates* (1·64 g, 2·56 mmol).

Hydridodichloro(carbonyl)bis(t-butyldiethylphosphine)iridium(III) and <math>Hydridodichloro(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(III), both of configuration (V; L =PBu^tEt₂ or PBu^tBuⁿ₂) were similarly prepared in 85% and82% yield respectively. These products were identified bycomparison of their melting points and i.r. spectra withthose of authentic samples.

We thank the S.R.C. and I.C.I. Ltd. for generous support.

[1/1594 Received, 2nd September, 1971]